WARRANTY COVERAGE:
Heat Exchanger 5 years from date of installation on invoice or date of shipment.
Pump 18 months after date of shipment (requires pump manufactures approval)
All other components 1 year after date of installation on invoice or date of shipment.

PROCEDURE FOR WARRANTY SERVICE:
For warranty service, contact your installing contractor with the following information:
Unit model number, serial number (located on the base of the unit) and the date of installation.
The installing contractor will notify the wholesaler from whom the unit was purchased. Alleged defective part(s) must be returned through trade channels and replacement parts will, if warranty conditions are met, be provided by Doucette Industries, Inc. through the wholesaler. If there are any questions about the coverage of this warranty, please contact Doucette Industries, Inc. at the address shown below.

LEGAL RIGHTS:
No one else is authorized to make any other warranties on Doucette Industries, Inc.'s behalf. No other warranty expressed or implied, including warranty of merchantability or fitness for a particular purpose is made. This warranty does not extend to liability for incidental, special or consequential damages. Some states do not allow limitations on how long an implied warranty lasts or the exclusion or limitation of incidental or consequential damages, so the above limitation or exclusion may not apply to you. This warranty gives you specific legal rights, and you may also have other rights which vary from state-to-state.

Models with freeze protection.
These models are designed to circulate water in very cold conditions to deter freezing. However, Doucette Industries cannot guarantee against freezing due to extreme weather, improper installation and power loss.

Doucette Industries, Inc.
20 Leigh Drive • York, PA 17406
800-445-7511
GENERAL INFORMATION

1. The Heat Recovery Unit is offered in several optional configurations. Check the Model number and the wiring diagram configuration to determine which configuration you are about to install. Some parts of this Installation Instructions may not apply.

2. The Heat Recovery Unit consists of an all-copper, vended double-wall heat exchanger and a water-cooled water circulating pump. The pump is controlled by the use of one or more limit switches. Power for the pump is derived either from the compressor contactor of the outdoor section of the Air Conditioner or Heat Pump, or it may be derived from a remote power source if the appropriate controls are used.

CAUTIONS / DISCLAIMERS

The Heat Recovery Unit is an appliance that operates in conjunction with the Air Conditioning or Heat Pump System, the Hot Water System and the Electrical System. Installation should only be performed by skilled technicians with appropriate training and experience.

The installation must be in compliance with local codes and ordinances. Local Plumbing and Electrical Building Codes take precedence over instructions contained herein.

The Manufacturer accepts no liability for equipment damaged and/or personal injury arising from improper installation of the Heat Recovery Unit.

SPECIAL NOTE: Installations subject to freezing ambient temperatures must have provision for freeze protection to avoid damage to this appliance. If you are installing a model equipped with a freeze stat, remember this type of freeze protection is inoperable in the event of a power outage. The safest method of freeze protection is to provide for draining the heat exchanger and water lines.

1. LOCATION / MOUNTING THE UNIT

The Heat Recovery Unit should be mounted as close to the Air Conditioner or Heat Pump outdoor section as possible, in order to minimize the length of refrigerant run. Indoor mounting is preferred, where practical, to reduce the likelihood of freezing ambient temperature. It is recommended that the Heat Recovery Unit be mounted above the system compressor in order to promote proper oil movement and drain-down. Mount with stubs pointing downward.

SPECIAL NOTE: The selected mounting location and orientation must allow the circulator pump to be positioned with the motor shaft horizontal. DO NOT install the Heat Recovery Unit flat on its back.

Mounting should be accomplished by fastening the HRU cabinet to the wall or other selected vertical member.

6. After a few moments of operating carefully pull back the insulation around the “cold water in” and “hot water out” lines right outside the Heat Recovery Unit cabinet, and check, by touching the exposed pipes, that the “hot water out” line is noticeably warmer than the “cold water in” line.

7. If you can feel that heat is being transferred into the water lines, you can replace the cover on the Heat Recovery Unit and start cleaning up. If not, move on to the next section of instructions. The section you need is TROUBLESHOOTING.

8. You may want to reset the thermostats on the water heater to optimize operating of the Heat Recovery Unit. We recommend setting the upper thermostat to 125 degrees F and the lower thermostat to 100 degrees F. In southern climates, it may be possible to shut off the water to the water heater during the cooling season, and have the Heat Recovery Unit provide 100% of the water heating.

VI. TROUBLESHOOTING

The first steps in diagnosing a suspected Heat Recovery Unit malfunction are to determine (1) Is heat being transferred; and (2) should the Heat Recovery Unit be running now.

1. Check, by touch, the relative temperatures of the four stubs and connecting lines coming from the Heat Recovery Unit. Is the “hot gas in” line truly hot? Is the “cold gas out” line cooler than the “hot gas in” line? Is the “cold water in” line cool, warm or hot? Is the “hot water out” line warmer than the “cold water in” line?

2. Check the other system components to determine if the Heat Recovery Unit should be on or off. Is the water heater power on or off? Are the water heater thermostats set up to 140 degrees or more? Is the Compressor running?

3. If heat is not being transferred and the Heat Recovery Unit should be running, open the front cover and inspect the following items: Are the controls still firmly clamped to their respective pipes? Does the wiring agree with the wiring diagram? Is the pump running? Are the hand valves open? If there are fuses, are the fuses blown? Most Failures are due to air in pump, bleed unit well, or call for assistance.

4. If the pump is not running and the fuses aren’t blown, check the controls by removing them from the circuit and rewiring the circuit. If the pump still isn’t running, replace the pump motor. Do not cut the plumbing connections from the pump, just replace the pump head.

5. If the pump is running and no heat is transferring, look for a blocked or crimped water line.
INSTALLATION

1. Disconnect power to the air conditioner or heat pump outdoor unit.

2. Run three (3) conductor #14 insulated wire in a grounded liquid tight conduit, or as required by local building and electrical codes.

3. In most applications the Heat Recovery Unit is intended to run only when the compressor runs. In this case power for the Heat Recovery Unit is pulled from the load side of the compressor contactor, T1, T2 for a two pole contactor or LI, T2 for a single pole contactor. Freeze protected models, however, must pull power from a source that is always present; either the line side of the compressor contactor, LI, L2, or a remote source.

4. Heat Pump equipped models and freeze protected models that are installed on an air conditioning system may be connected to a remote power source, independent of the air conditioner power.

5. Connect the power lines to the wiring pigtails in the Heat Recovery Unit using wire nuts (not provided). Secure the ground connections. The power lines can enter the Heat Recovery Unit cabinet from the left or right side by simply exchanging the vent cap and strain relief bushing installed in the cabinet.

NOTE: The Heat Recovery Unit is designated to operate on 230VAC, single phase power. Under normal operating conditions it should draw approximately 90 watts (0.4 amps).

NOTES: Cutting of existing unit wiring is not permitted or equivalent.

V. SYSTEM START UP

At this point the Heat Recovery Unit is ready to operate in conjunction with the air conditioner or Heat Pump and the water heater.

1. Reconnect power to the air conditioner or heat pump.

2. Leave the cover off the Heat Recovery Unit during initial start-up, to facilitate final inspection.

3. Set the indoor thermostat on the air conditioner or heat pump to cause operation in the cooling mode.

4. The Heat Recovery Unit’s circulator pump will start-up after the compressor starts up. Heat pump equipped and freeze protected models will be delayed in start-up until the hot gas control sensor is satisfied (125 Degrees F).

5. Inspect the interior of the Heat Recovery Unit for signs of leaks, exposed wire or loose connections. Make sure the controls are mounted securely on the internal piping.

II. REFRIGERANT LINE INSTALLATION

Before starting the installation into the refrigerant circuit, inspect and note the condition and performance of the Air Conditioner or Heat Pump. Any system deficiencies must be corrected prior to installing the Heat Recovery Unit. Addition of the unit will not correct system problems. Record the suction and discharge pressures and compressor amperage draw. These will be used for comparison with system operation after the refrigerant line installation is complete and before the water line installation is performed.

INSTALLATION

1. Disconnect power to the Air Conditioner or Heat Pump Outdoor Unit.

2. Discharge the refrigerant from the system, in compliance with local regulations; or pinch off the refrigerant line between the compressor discharge and condenser coil. Pinch off ahead of the reversing valve if installing on a Heat Pump System.

3. Cut the refrigerant line between compressor and condenser, or reversing valve if a Heat Pump System. Connect new refrigerant lines between the Heat Recovery Unit and the cut refrigerant lines. The recommended line size is dependent on the one way distance between the Heat Recovery Unit and the compressor; and the size of the system. Use the following table as a guideline.

<table>
<thead>
<tr>
<th>2 Ton</th>
<th>3 Ton</th>
<th>4 Ton</th>
<th>5 Ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2" OD</td>
<td>Up to 16 ft</td>
<td>Up to 25 ft</td>
<td>N/A</td>
</tr>
<tr>
<td>5/8" OD</td>
<td>Up to 30 ft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/4" OD</td>
<td>Up to 30 ft</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Up to 30 ft</td>
<td></td>
</tr>
</tbody>
</table>

4. Make the connections with high temperature solder or brazing rod.

NOTE: Make sure the Compressor discharge cut end is connected to the “Hot Gas In” stub on the Heat Recovery Unit.

5. Insulate both refrigerant lines from the HRU with closed cell foam pipe insulation leaving no exposed surfaces. Do not put both lines in one jacket. This will reduce the heat output of the Heat Recovery Unit.

6. Evacuate and recharge the system using your standard practice.

7. Carefully check for leaks; if none are found, then check system pressures and amperage draw, and compare to the readings taken before Heat Recovery Unit installation. Adjust charge, as required, to achieve normal system operation.
III. WATER LINE INSTALLATION

Before starting installation of the water connections, inspect the water heater for leaks, corrosion or other problems. If the water heater needs to be changed out, now is the right time. If the existing water heater is acceptable, proceed with the following installation.

INSTALLATION

1. Shut off power to the water heater, if electric, at the fuse or circuit breaker panel. If it's a gas-fired water heater, close off the gas valve found ahead of the water heater burner and controls.

2. Shut off the cold water supply to the water heater.

3. Empty the water heater by attaching a hose to the drain valve and opening the pressure relief valve. If the draining water appears dirty or cloudy, you may have to refill the water heater and drain it again, until the draining water appears clear and free of sediment.

4. Cut the cold water supply line between the shut-off valve and the top of the water heater. Insert a tee between the two cut ends. This will become the cold water supply to the Heat Recovery Unit.

NOTE: Some newer water heaters come with 1-way valves and must be removed when using the above method.

5. Determine where the hot water from the Heat Recovery Unit will return to the water heater. We recommend the use of a coaxial fitting such as our easy connect top fitting **IK-5** which fastens into the hot water outlet of the water heater and brings the Heat Recovery Unit's hot water back into the top of the water heater. Some installers prefer to return the hot water, through the bottom of the water heater by removing the drain valve, inserting a pipe nipple and tee, and then reinstalling the drain valve and the Heat Recovery water line on the tee. This approach is acceptable if you have determined that the water heater does not gather much sand, sediment or lime. Installation fittings such as **An IK-5** is a universal installation fitting that can be used in either location.

NOTES:

- Do not return the Heat Recovery Unit's hot water by placing a Tee in the hot water delivery pipe above the water heater. This approach will allow water to pass directly from the Heat Recovery Unit into the Home and is likely to create bursts of cold water in the shower when the Heat Recovery Unit cycles on while the shower is running.
- Do not return the Heat Recovery Unit hot water by modifying the water heater's pressure relief valve opening.

6. Connect the water lines between the water heater and the Heat Recovery Unit. The recommended pipe size is dependent on the one-way distance from the HRU to the water heater; the number of bends in the run; and the capacity of the cooling system.

Use the following table as a guideline. (Assumes 3-90 degree bends)

<table>
<thead>
<tr>
<th>1/2" OD (38° Nom)</th>
<th>5/8" OD (13/8" Nom)</th>
<th>3/4" OP (5/8" Nom)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Ton</td>
<td>150 ft</td>
<td>N/A</td>
</tr>
<tr>
<td>3 Ton</td>
<td>100 ft</td>
<td>N/A</td>
</tr>
<tr>
<td>4 Ton</td>
<td>100 ft</td>
<td>150 ft</td>
</tr>
<tr>
<td>5 Ton</td>
<td>25 ft</td>
<td>50 ft</td>
</tr>
</tbody>
</table>

Larger runs & Larger pipes are not recommended

Your Heat Recovery Unit may have factory installed hand valves. If not we strongly recommend the installation of hand valves and a pressure relief valve at the Heat Recovery Unit end of the water lines. Drainable valves, also known as "Stop and Waste" valves should be used, as they will allow draining of the heat exchanger and will also perform as air-bleeds when filling the system.

NOTES:

- Make sure that the water lines are connected to the "cold water in" and "hot water out" stubs of the Heat Recovery Unit. Connecting the water lines to the refrigerant lines will cause serious damage to your compressor.
- Make sure that the water line from the water heater's cold water supply tee is connected to the "cold water in" stub on the Heat Recovery Unit. Performance is significantly impaired if the water line connections are reversed.

8. Insulate the entire length of both water lines between the water heater and the Heat Recovery Unit, using closed cell foam pipe insulation.

9. Turn on the cold water supply to the water heater and allow the water heater and the Heat Recovery Unit to fill with water. Bleed air from the water heater and the lines by opening a hot water faucet in the house; opening the pressure relief valve at the water heater; opening the drain fittings on the hand valves at the Heat Recovery Unit; and venting the circulator pump. Shut the vents, pressure relief valve and faucet once the air has been expelled from the lines. Once the system is full of water, check for leaks at each of the new connections.

10. Turn the power (or gas) back on the water heater and check for normal operation.

NOTE: The Heat Recovery Unit is capable of generating very hot water. Precautions should be taken to avoid the possibility of scalding. Make sure that the "hot water out" line is well insulated and protected from accidental handling or damage by children, lawnmowers, etc...

IV. ELECTRICAL CONNECTIONS

The controls have been factory set and wired. No field wiring or adjustments of controls is necessary. The connection point for electrical hookup may vary, depending on the control configuration in the Heat Recovery Unit.